
Quasi-point separation of variables for the Henon - Heiles system and a system with a quartic

potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 7769

(http://iopscience.iop.org/0305-4470/29/23/032)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 7769–7778. Printed in the UK

Quasi-point separation of variables for the Henon–Heiles
system and a system with a quartic potential

S Rauch-Wojciechowski† and A V Tsiganov‡
† Department of Mathematics, Linkoping University, S-58183, Linkoping, Sweden
‡ Department of Mathematical and Computational Physics, Institute of Physics, St Petersburg
University, 198 904, St Petersburg, Russia

Received 18 December 1995, in final form 17 June 1996

Abstract. We examine the problem of integrability of two-dimensional Hamiltonian systems
by means of separation of variables. A systematic approach to the construction of the special
non-pure coordinate separation of variables for certain natural two-dimensional Hamiltonians is
proposed.

1. Introduction

In this paper we study quasi-point separation of variables for certain natural Hamiltonians

H = 1
2(p

2
x + p2

y)+ V (x, y) (1.1)

of two degrees of freedom.
The classical separability theory [10, 4] is concerned with orthogonal point trans-

formationsx = 81(u, v) andy = 82(u, v) for which the corresponding Hamilton–Jacobi
equation expressed in terms of(u, v)-variables can be solved by separation of variables.
The list of coordinate systems in-plane that provide point separation of variables for systems
with the Hamiltonian (1.1) are well known. Even an effective criterion of separability for a
given potentialV (x, y) has been formulated [5, 10]. In this paper we consider a non-pure
point transformation related to a Cartesian system of coordinates.

Very little is known about the general canonical transformationsxk = 8k(uj , puj ) and
pk = 9k(uj , puj ), k = 1, 2, which separate the Hamiltonian (1.1). Recently, a special
type of non-point transformationsx = ϕ(H,C) · 8(u, v) has been introduced for the
third integrable case of the Henon–Heiles system [7, 3] and for a system with a quartic
potential [8]. Hereϕ(H,C) is a certain function of the HamiltonianH and of the second
integral of motionC. On the orbitO (H = α1, C = α2) this transformation becomes
a point transformation and, therefore, we shall call it a quasi-point transformation. These
transformations have been found either in the context of the Painlevé expansion [7, 8] or
have been derived from the Miura transformation for the systems related to stationary flows
of soliton equations [3, 2]; however, no general principle for constructing general (i.e. non-
point) canonically separable potentials is known. This is the reason why in this paper we
address this question directly by starting with general separated equations and by trying to
find transformations which lead to natural Hamiltonians (1.1) of two degrees of freedom.
We do not find any essentially new potentials. We present in detail our construction of
separating variables and list the main results. We explain the connection of quasi-point
transformations with supersymmetric quantum mechanics.
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2. Quasi-point canonical transformation

Let us begin with a two-dimensional system expressed in terms of canonical variables of
separation(u, pu, v, pv) with the rectangular separated equations of the general form [4, 10]

11(u, pu) = f (u)p2
u + V1(u) 12(v, pv) = g(v)p2

v + V2(v) . (2.1)

The functions1j Poisson commute{11,12} = 0 with respect to the standard Poisson
brackets. Notice that we could, by the using a point transformation, reduce these equations
to equations withf (u) = g(v) = 1, but the form of (2.1) is more suitable for further
calculations.

As commuting integrals of motion we choose

H = 11 +12 = f (u)p2
u + g(v)p2

v + V+(u, v)

C = a 11 − b12 = a f (u)p2
u − b g(v)p2

v + V−(u, v) a, b ∈ R
(2.2)

which clearly defineV±(u, v). These integrals are second-order polynomials in momenta.
A condition of separability for the potentialsV± is

∂2

∂u ∂v
V±(u, v) = 0 . (2.3)

Let us denote a canonical transformation to the Cartesian variables(x, y) as

x = 81(u, pu, v, pv) and y = 82(u, pu, v, pv) (2.4)

and let us require that after the transformation (2.4) the Hamiltonian (2.2) takes the natural
Hamiltonian form (1.1). Then

px = {H, x} and py = {H, y}
and, after substituting these momenta into the canonical Poisson brackets, we find a system
of equations for the transformations (2.4), which reads as

{8j(u, pu, v, pv),8k(u, pu, v, pv)} = 0

{{H,8j(u, pu, v, pv)}, {H,8k(u, pu, v, pv)}} = 0 (j, k = 1, 2)

{{H,8j(u, pu, v, pv)},8k(u, pu, v, pv)} = δjk .

(2.5)

Since, we cannot solve this system of equations in the whole generality, we have to make a
certain simplifying ansatz for the functions8k in order to obtain certain particular solutions
of (2.5).

In the class of point transformations̃x = 8̃1(u, v) and ỹ = 8̃2(u, v), the general
solution of (2.5) has the form

x̃ = αu+ βv + λ1 ỹ = γ u+ δv + λ2 (2.6)

which is a superposition of rotation and translation transformations. Since the functions
f (u), g(v) and V±(u, v) are arbitrary we can always rewrite the solution (2.6) in the
following non-symmetric form:

x̃ = 8̃1(u, v) = u− v ỹ = 8̃2(u, v) = u+ v + 2γ (2.7)

which will be used below. The polynomial order of integrals of motion (2.2) remains
unchanged under (2.7).

In order to obtain a non-point transformation as a solution of (2.5) we shall introduce
a particular ansatz forx = 81(u, pu, v, pv), which is suggested by the results of [7, 8]. To
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explain the structure of this ansatz we begin with a simple example, which will be present
in detail below. Let us take

1j(ξ) = ξnp2
ξ + Vj (ξ) ξ = u, v

x2 = 11(u)u
−m um = 11x

−2
(2.8)

and require that the Hamiltonian (2.2) takes the natural form (1.1), when expressed through
the new variables(x, px). Then, we obtain

px

x
= −mun−1pu

and by applying the Poisson brackets (2.5) we get{px
x
, x2

}
= 2 = {−mun−1pu, u

n−mp2
u + u−mV1(u)} . (2.9)

The kinetic part of this equation leads to a restriction for the kinetic part of the Hamiltonian:
n = 2 −m. The potential part of (2.9) gives

u
∂V1(u)

∂u
−mV1(u) = −2m−1u2m

which has the solution

V1 = −2m−2u2m + αum = −2m−212
1x

−4 + α11x
2 α ∈ R . (2.10)

According to the definitions (1.1) and (2.8) the momentapu is

pu = −11pxx
−3

mu

and, after substitutingu, pu andV1(u), the separated equation11 (2.8) becomes

11(x, px) = 1
2p

2
x − 1

2m
2(x4 − αx2) α ∈ R .

The second pair of variables(y, py) follows from the second separated equation12(v) and
the Hamiltonian (2.2) transforms to the new Hamiltonian

H = 1
2(p

2
x + p2

y)+ α1x
4 + α2y

4 + α3x
2 + α4y

2 αk ∈ R

under the non-point canonical transformation (2.8).
Next we consider a symmetric form of this transformation related to the symmetric form

of the second integral of motion (2.2). Let us take

Pn(x) =
n∑
k=0

akx
k = Cφ(u− v) ak ∈ R (2.11)

wherePn(x) is annth-order polynomial,C is an integral of motion (2.2) andφ(u− v) is a
function of one variablez = u− v. On the orbitO (C = c = constant) the transformation
(2.11) becomes a point transformation and, therefore, we shall call this transformation a
quasi-point transformation.

After substituting the ansatz (2.11) into the equation

{{H(u, pu, v, pv),81(u, pu, v, pv)},81(u, pu, v, pv)} = 1 (2.12)

we consider terms at independent powers of momenta. It appears that a solution of the
corresponding equation exists only ifPn(x) = x2 (up to a point transformation (2.6)) and
we obtain one equation for the functionφ(z)

2
dφ(z)

dz
= φ(z)

d2φ(z)

dz2
z = u− v (2.13)
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and a system of equations for the functionsf (u) andg(v)

f (u)− bg(v)− b(u− v)
dg(v)

dv
= 0

−af (u)+ bg(v)+ a(u− v)
df (u)

du
= 0 .

(2.14)

The general solutions for (2.13) and (2.14) are

φ(z) = z−1 = 8̃−1
1 (u, v)

a = b = α1 f (u) = α2u+ α3

g(v) = α2v + α3 αk ∈ R .
(2.15)

Further, we obtain that

x2 = C8̃−1
1 (u, v)

where8̃−1
1 (u, v) is a point transformation (2.7) and, therefore, we can consider (2.11) as

a natural generalization of a pure point transformation, which can be applied to the other
three types of coordinate-separated equations in the plane. For instance, for the parabolic
system of coordinates we have to substitute

C = v211 − u212

u2 + v2
8̃1(u, v) = u2 − v2

into the ansatz (2.11).
From the remaining terms of (2.12) (by taking into account (2.13) and (2.14)) we obtain

that the potentialV−(u, v) obeys the following equation:(
(α2u+ α3)

∂V−
∂u

− (α2v + α3)
∂V−
∂v

)
− (α2(u+ v)+ 2α3)

α1(u− v)
V− = − 2(u− v)3

α1(u− v)
. (2.16)

For a separable potential∂2V−(u, v)/∂u∂v = 0 this equation has a unique solution

V1,2(ξ) = 2/α1ξ
3 + β2ξ

2 + β1ξ + β0

α2ξ + α3
ξ = u, v (2.17)

whereβk are arbitrary constants.
Next we have to determine the second variabley = 82(u, pu, v, pv) by using

equations (2.5). Again we are not able to find a general solution for82 and we shall
use the particular ansatz of [7, 8],

Qn(y) =
n∑
k=0

bky
k = ψ1(u+ v)+ ψ2(x, px) py = {H, y} (2.18)

whereQn(y) is a polynomial of ordern andψk are as yet unspecified functions.
After substituting (2.18) into the equations

{x,Qn(y)} = 0 and {px,Qn(y)} = 0

(recall thatpx = {H, x}) we obtain

Qn(y) = γ1

[
u+ v + γ2 − α1

2

(px
x

)2
+ α2x

2

2

]
. (2.19)

This ansatz is a superposition of a point transformation8̃2(u, v) (equation (2.7)) with a
term depending on the first variables(x, px).
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By using the remaining equation{py, y} = 1 we obtain (up to a point transformations
(2.6)) that

Qn(y) = y2 γ1 = − 1

α2
(2.20)

and yet another differential equation of the second order for the potentialV+(u, v). We
present here a partial form of this equation withα2 = 0

∂2V+
∂z2

= z
∂V+
∂z

z = u− v .

This equation forV+ is equivalent to the equation forV− (equation (2.16)) provided
that the constantsα1, α2, β2 andγ2 satisfy

γ2 + α1β2 + 2α3 = 0 . (2.21)

Let us summarize these considerations as

Proposition 1. A quasi-point transformation of the form

Pn(x) =
n∑
k=1

akx
k = C

u− v

Qm(y) =
m∑
k=1

bky
k = ψ1(u+ v)+ ψ2(x, px) ak, bk ∈ R

extended to a canonical transformation, transforms the Hamiltonian

H = f (u)p2
u + g(v)p2

v + V1(u)+ V2(v)

into the natural Hamiltonian form

H = 1
2(p

2
x + p2

y)+ V (x, y)

if and only if

x2 = C

u− v

px

x
= − (α2u+ α3)pu − (α2v + α3)pv

u− v

y2 := − 1

α2

(
u+ v − α1β2 − 2a3 − α1

2

(px
x

)2
+ α2x

2

2

)
ypy = 1

α2

(
(α2u+ α3)pu − (α2v + α3)pv

+ px

2x

(
α1p

2
x

x2
+ 6α3

α2
− 6α2y

2 + α1β2 − α2x
2

) )
(2.22)

and the potentials

Vk(ξ) = 2/α1ξ
3 + β2ξ

2 + β1ξ + β0

α2ξ + α3
k = 1 ξ = u or k = 2 ξ = v .

Constantsαj , βj , j = 1, 2, 3 are the six free parameters of this transformation.



7774 S Rauch-Wojciechowski and A V Tsiganov

An inverse transformation to (2.22) reads

ξ = ± C

2x2
+ α1p

2
x

4x2
− α2

4
(2y2 + x2)− γ2 ξ = u, v

pξ = 1

2(α2ξ + α3)

(
pxC

x3
− α2ypy − px

2x

(
α1p

2
x

x2
+ 6α3

α2
− 6α2y

2 + α1β2 − α2x
2

)) (2.23)

where the integralC is an as yet unspecified function of the new variables(x, px, y, py).
We have to substitute this inverse transformation into the definition of the integral of motion
C (equation (2.2)) and solve the resulting equation. It has the polynomial form

aC4 + bC2 + c = 0 (2.24)

with the coefficientsa, b and c depending on the variables(x, px, y, py). There are two
solutionsC2

1,2, which are related by the change of variablesy → −y, py → −py , and they
are polynomial expressions in the new variables. Notice that the second integral of motion
C (equation (2.2)), which is polynomial in(u, pu, v, pv) becomes an algebraic function of
(x, px, y, py).

After substitution ofC(x, px, y, py) into (2.23) we get an inverse transformation.

Proposition 2. A Hamiltonian

H = f (u)p2
u + g(v)p2

v + V1(u)+ V2(v)

with the potentials given by (2.17) transforms to either of two natural Hamiltonians

H1 = 1
2(p

2
x + p2

y)− α2

2α1
(x4 + 6x2y3 + 8y4)+ 1

2β2(x
2 + 4y2)+ 2β0

α2
2y

2
+ 2α2β1 (2.25)

and

H2 = 1
2(p

2
x + p2

y)− α2

2α1
(x4 + 6x2y3 + y4) (2.26)

under the quasi-point transformation (2.22) and under the point transformation, respectively.

For brevity, we putα3 = 0 in H1 (equation (2.25)), since the introduction ofα3 6= 0
corresponds to the shift of the variabley → y + α3/4α2 [9]. In H2 (equation (2.26)) we
presented only the highest polynomial terms.

Systems with HamiltoniansH1 andH2 are associated with restricted flows of some
PDEs [3, 2]. In classical mechanics these systems have common separated equations.
Second integrals of motionC2 derived from the equation (2.24) are well known and can be
found in [8, 9].

By rescaling constantsaj , βj and by taking the limitsα2 → 0 and α3 → 1, the
Hamiltonians (2.25) and (2.26) are transformed into the following Hamiltonians for the
Henon–Heiles system [3, 7]:

H1 = 1
2(p

2
x + p2

y)+ 2

α1α3
y(3x2 + 16y2)− β2(x

2 + 16y2)

+ 2(α1β2 − 2β1)y + 2β0 + α1β2β1

H2 = 1
2(p

2
x + p2

y)+ ay(x2 + 2y2) .

(2.27)

A complete account of this limit procedure can be found in [9].
It is known that the Hamiltonian (2.25) has integrable extensions

H = H1,2 + m

x2
+ l

y2
+ n

x6
+ ey



Quasi-point separation of variables 7775

where eithere = 0 or n = m = 0 [8]. We can include the termsµx−2 and ly−2 in our
proposed scheme. Let us consider the following infinite-dimensional representation ofsl(2)
defined in the Cartan–Weil basis:

s3 = xp

2
s+ = x2

2
s− = −p

2

2
{p, q} = 1 .

The mapping

s3 → s ′3 = s3 s+ → s ′+ = s+

s− → s ′− = s− + f s−1
+ = p2

2
+ 2f

x2
f ∈ R

(2.28)

is an outer automorphism of the space of infinite-dimensional representations ofsl(2). For
the Henon–Heiles system and for the system with a quartic potential, the phase space can
be identified completely or partially with the coadjoint orbits insl(2)∗ as (2.28). Hence,
all the presented results can be carried over on the systems with shifted squared momenta.
The corresponding deformation of the separated equation has been described in [8].

3. Quasi-point transformations and SUSY quantum mechanics

Next, we present the interesting relations of the quasi-point canonical transformation
with the supersymmetrical quantum mechanics, which represents in a concise algebraic
form the spectral equivalence between different Hamiltonian quantum systems realized
by the Darboux transformation [1]. Further, for brevity, we fix the value of parameters
βk = 0, α2 = 1, α1 = 2.

Variables of separationu, v for the HamiltonianH2 can be defined as the roots of
quadratic equation

ξ2 − yξ + y2 − x2

4
= 0 . (3.1)

The quasi-point transformations (2.23) can be presented in a similar form. Variablesu, v

(equation (2.23)) are roots of the quadratic equation

ξ2 − (q+ + q−)
x2

ξ + (q+ − q−)2

4x2
= 0 . (3.2)

Here, we introduced functionsq± andf with the following properties:

{H, q± } = ±f q± C2 = 4q+ q− . (3.3)

This algebra (3.3) is the classical limit of the two-dimensional quantum SUSY algebra [1].
For the system with a quartic potential, functionsq± andf are given by

q+ = 1
2p

2
x − 1

4x
2(2y2 + x2)+ x

(
ypx − 1

2pyx
)

q−(x, px, y, py) = q+(x, px,−y,−py)
f = 2y

(3.4)

and for the Henon–Heiles system

q+ = 1
2p

2
x + 2x2y + ix

√
2(2pxy − xpy)px − (8y2 + x2)x2

q−(x, px, y, py) = q∗
+(x, px, y, py)

f = i
4pxy − xpy√

2(2pxy − xpy)px − (8y2 + x2)x2

(3.5)
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where i is
√−1 andq∗

+ denotes the complex conjugate of the functionq+. For the arbitrary
values of the parametersαk andβk these functions are derived from equations (2.23) and
(3.2).

For the system with quartic potential functionsq± and f , equations (3.4) have been
introduced in [6] by considering a linearization of the corresponding Hamiltonian flow on
certain constraint submanifolds.

It would be interesting to apply equation (3.2) and its quantum counterpart for separating
variables in quantum mechanics.

Motivated by the relation between the classical limit of SUSY quantum mechanics and
quasi-point separation of variables we present the classical SUSY algebra (3.3) for some
other two-dimensional natural Hamiltonian systems. For the systems of [11] and for the
Holt-like systems the classical limit of SUSY algebra (3.3) is equal to

HW = p2
x + p2

y

2
+

(
a2

1

2
+ α2α3

)
x2/3 − 9

16
α2

1α2x
−2/3y − α3y

q+ = −p
2
x

2
+ 9

16

(
α2

1α2x
−2/3y − α2

α1

)
+

(
α2

1

2
+ α2α3

)
x2/3 + i

(
α1x

1/3px + α2

3α1
py

)
f = − 2

3iα1x
−2/3

and

HH = p2
x + p2

y

2
+ y−2/3

(
9
2y

2 + x2
)

q+ = p2
x + 2y−2/3x2 + i

√
2(pxpy + 6xy1/3)2 − (2x2y−2/3)2

f = 4ix2py

3y
√

2(y2/3pxpy + 6yx)2 − 4x4

whereq−(x, px, y, py) = q∗
+(x, px, y, py).

Notice, that the construction of isospectral two-dimensional Hamiltonians in
supersymmetrical quantum mechanics is closely connected with another problem, namely
with a search for the second integral of motion for the quantum integrable systems [1].
Here we present a new characterization of this problem.

Proposition 3. Let us start with the classical SUSY algebra (3.3) for a two-dimensional
integrable system defined by four functionsH, f andq±. If the following equation for1h
can be solved:

{1h, {q+, q−} } = {f, q+}q− + {f, q−}q+ (3.6)

then the pair of mutually commuting integrals of motion

H̃ = H +1h C̃ = {q+, q−} {H̃ , C̃} = 0 (3.7)

defines a new two-dimensional integrable system.

The evolution on a 2n-dimensional symplectic manifold is called completely integrable if
there existn functionsI1, . . . , In, which are independent integrals in the involution

{Ii(x, p), Ij (x, p)} = 0 i, j = 1, . . . , n .

The initial integrals of motionH and C are functionally independent functions and,
therefore, the new integrals̃H and C̃ are independent. For the proof of involution of
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integrals we need the Jacobi identity for the Poisson brackets. First, assuming (3.3) holds
we have

{H, C̃} = {H, {q+, q−}} = {q+, {H, q−}} − {q−, {H, q+}}
= q−{f, q+} + q+{f, q−} .

Next, using (3.6) we get (3.7)

{H +1h, C̃} = {H̃ , C̃} = 0 .

So, we have two independent integrals of motion in involution, which define a new integrable
system.

As an example, for the system with a quartic potential, equation (3.6) can be integrated
and it yields

H1 = p2
x + p2

y

2
− 1

4(x
4 + 6x2y2 + 8y4)

1h = − 1
8x

4

H̃ = H1 +1h = p2
x + p2

y

2
− 1

8(x
4 + 12x2y2 + 16y4)

C̃ = {q+, q−} = 16
(
2(pyx − ypx)px − (2y2 − x2)yx2

)
.

(3.8)

A new system with integrals of motioñH, C̃ is separable in the parabolic coordinates, which
are defined as roots of the quadratic equationξ2 + 2yξ − x2 = 0.

4. Conclusions

In the previous paragraphs we have examined the six-parameter quasi-point canonical
transformation leading to separation of variables for the Henon–Heiles system and a system
with a quartic potential. We have proved that this transformation is strictly connected to the
rectangular separated equations and that it cannot be generalized. In addition, we have found
some relations of these variables of separation with the two-dimensional supersymmetric
quantum mechanics.
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