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Abstract. We examine the problem of integrability of two-dimensional Hamiltonian systems
by means of separation of variables. A systematic approach to the construction of the special
non-pure coordinate separation of variables for certain natural two-dimensional Hamiltonians is
proposed.

1. Introduction

In this paper we study quasi-point separation of variables for certain natural Hamiltonians
H =3+ pD)+V(x,y) (1.1)

of two degrees of freedom.

The classical separability theory [10, 4] is concerned with orthogonal point trans-
formationsx = ®;(u, v) andy = ®,(u, v) for which the corresponding Hamilton—Jacobi
equation expressed in terms @f, v)-variables can be solved by separation of variables.
The list of coordinate systems in-plane that provide point separation of variables for systems
with the Hamiltonian (1.1) are well known. Even an effective criterion of separability for a
given potentialV (x, y) has been formulated [5, 10]. In this paper we consider a hon-pure
point transformation related to a Cartesian system of coordinates.

Very little is known about the general canonical transformations- @ («;, p,,) and
pe = Yi(uj, py;), k = 1,2, which separate the Hamiltonian (1.1). Recently, a special
type of non-point transformations = ¢(H, C) - ®(u, v) has been introduced for the
third integrable case of the Henon—Heiles system [7, 3] and for a system with a quartic
potential [8]. Herep(H, C) is a certain function of the HamiltoniaBl and of the second
integral of motionC. On the orbitO (H = a1, C = ay) this transformation becomes
a point transformation and, therefore, we shall call it a quasi-point transformation. These
transformations have been found either in the context of the P&irdgpansion [7, 8] or
have been derived from the Miura transformation for the systems related to stationary flows
of soliton equations [3, 2]; however, no general principle for constructing general (i.e. non-
point) canonically separable potentials is known. This is the reason why in this paper we
address this question directly by starting with general separated equations and by trying to
find transformations which lead to natural Hamiltonians (1.1) of two degrees of freedom.
We do not find any essentially new potentials. We present in detail our construction of
separating variables and list the main results. We explain the connection of quasi-point
transformations with supersymmetric quantum mechanics.
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2. Quasi-point canonical transformation

Let us begin with a two-dimensional system expressed in terms of canonical variables of
separation(u, p,, v, p,) with the rectangular separated equations of the general form [4, 10]

A1(u, pu) = fu)p?+ Vi(u) Ar(v, py) = g(W)p2 + Vo(v) . (2.1)

The functionsA; Poisson commutéA, Ao} = 0 with respect to the standard Poisson
brackets. Notice that we could, by the using a point transformation, reduce these equations
to equations withf () = g(v) = 1, but the form of (2.1) is more suitable for further
calculations.

As commuting integrals of motion we choose
H= A1+ Ay = fu)pl+ g@)ps+ Vi(u, v) 22)
C:aAl—bAzzaf(u)pL%—bg(v)pf—i—V,(u,v) a,beR '

which clearly defineV.(u, v). These integrals are second-order polynomials in momenta.
A condition of separability for the potentialg,. is
32
ou v
Let us denote a canonical transformation to the Cartesian varighles as

Vi(u,v) =0. (2.3)

x = ®1(u, py, v, py) and y = ®(u, py, v, py) (2.4)

and let us require that after the transformation (2.4) the Hamiltonian (2.2) takes the natural
Hamiltonian form (1.1). Then

Px =1{H, x} and py=1{H,y}

and, after substituting these momenta into the canonical Poisson brackets, we find a system
of equations for the transformations (2.4), which reads as

{qDJ(uv Pm v, Pu)7 CD]((M, pua v, Pv)} = 0
{{Hv (bj(uv pu»vv pv)}» {H’ CD/C(M, puvvv pU)}}:O (]7k:17 2) (25)
{{H9 (D](u’ Pu, VU, pu)}9 (I)k(u5 Pu, V, pv)} = 3]]( .

Since, we cannot solve this system of equations in the whole generality, we have to make a
certain simplifying ansatz for the functiows, in order to obtain certain particular solutions
of (2.5).

In the class of point transformations = 5l(u, v) andy = 52(u, v), the general
solution of (2.5) has the form

X=au+ Bv+ A Y =vyu-+38v—+ i (2.6)

which is a superposition of rotation and translation transformations. Since the functions
f), g() and VL(u,v) are arbitrary we can always rewrite the solution (2.6) in the
following non-symmetric form:

¥=®1u,v) =u—v }':E)g(u,v)zu+v+2y (2.7)

which will be used below. The polynomial order of integrals of motion (2.2) remains
unchanged under (2.7).

In order to obtain a non-point transformation as a solution of (2.5) we shall introduce
a particular ansatz far = ®1(u, p,, v, p,), which is suggested by the results of [7, 8]. To
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explain the structure of this ansatz we begin with a simple example, which will be present
in detail below. Let us take

Aj(E) = E"pt + V; (&) E=uv 28
X2 = Awu™ u" = Ax 2 .

and require that the Hamiltonian (2.2) takes the natural form (1.1), when expressed through
the new variablesx, p,). Then, we obtain
Px
X

and by applying the Poisson brackets (2.5) we get

= —mu""'p,

{%, x2} =2 ={—mu" " p,, u""p? +uT"Vi(u)}. (2.9)
The kinetic part of this equation leads to a restriction for the kinetic part of the Hamiltonian:
n = 2 — m. The potential part of (2.9) gives
aVi(u)
du
which has the solution
Vi=—2m2u®" + au™ = —2m?Aix " + aAgx?® aeR. (2.10)

According to the definitions (1.1) and (2.8) the momepais

Alpxx73

u —mVi(u) = —2m u?"

u =

mu
and, after substituting, p, and Vi(u), the separated equatiaxy (2.8) becomes

A1(x, py) = %pf — %mz()c4 — otxz) axeR.

The second pair of variabldy, p,) follows from the second separated equativs(v) and
the Hamiltonian (2.2) transforms to the new Hamiltonian

H = %(pf + pf) + ox? + apy? + azx? + agy? ar € R

under the non-point canonical transformation (2.8).
Next we consider a symmetric form of this transformation related to the symmetric form
of the second integral of motion (2.2). Let us take

Pi(x) =) ax* = Cou—v) a €R (2.11)
k=0

where P, (x) is annth-order polynomial( is an integral of motion (2.2) ang@l(u — v) is a
function of one variable = u — v. On the orbitO (C = ¢ = constant the transformation
(2.11) becomes a point transformation and, therefore, we shall call this transformation a
guasi-point transformation.

After substituting the ansatz (2.11) into the equation

{{H(M, Pu>V, pv)s (Dl(u, Pu, VU, pv)}s (Dl(u, Pu, VU, pv)} =1 (212)

we consider terms at independent powers of momenta. It appears that a solution of the
corresponding equation exists only #,(x) = x? (up to a point transformation (2.6)) and
we obtain one equation for the functign(z)

do (2) ¢ (2)

“a — P g

Z=u—v (2.13)
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and a system of equations for the functiohg:) and g(v)

d
fw) = bg(v) — b(u — v) if)”) -0
(2.14)
—af (u) +bg() +a( —v) dj;i”) =0.
The general solutions for (2.13) and (2.14) are
$() =zt =du, )
a=>b= o7 f(u) = ool + a3 (215)

g(v) = av + a3 o, € R.
Further, we obtain that

x2 = Cod7 (u, v)
where 5;1(14, v) is a point transformation (2.7) and, therefore, we can consider (2.11) as
a natural generalization of a pure point transformation, which can be applied to the other

three types of coordinate-separated equations in the plane. For instance, for the parabolic
system of coordinates we have to substitute

U2A1 — uzAz ~ 2 P
CZW @1(u,v)=u — v
into the ansatz (2.11).
From the remaining terms of (2.12) (by taking into account (2.13) and (2.14)) we obtain

that the potentiaV_(u, v) obeys the following equation:
( V. av. )_ (az(u+v)+2a3)v 2w —v)?

(aou + a3) —— — (o2v +3) —— (2.16)
ou ov

oa1(u — v) T au—v)
For a separable potentiafV_(u, v)/dudv = 0 this equation has a unique solution

2 3 2
Vio(E) = Jo&> + B2E° + B1& + Bo E—uv 2.17)
o2é + a3
where g, are arbitrary constants.
Next we have to determine the second variable= &,(u, p,, v, p,) by using
equations (2.5). Again we are not able to find a general solutiondforand we shall

use the particular ansatz of [7, 8],

0. =D b =i +v) +yalx.p)  py=1{H.y) (2.18)
k=0

where Q,,(y) is a polynomial of order and; are as yet unspecified functions.
After substituting (2.18) into the equations

{x, 2.1} =0 and {px, Qn(y)} =0

(recall thatp, = {H, x}) we obtain

2

_ o1 (px\? | a2
0.(y)=n [u+v+)/2—2(x) + 2 ] (2.19)

This ansatz is a superposition of a point transformatiagiu, v) (equation (2.7)) with a
term depending on the first variablés, p,).
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By using the remaining equatiojp,, y} = 1 we obtain (up to a point transformations
(2.6)) that

1

0.(y) = y° n=-—— (2.20)
o

and yet another differential equation of the second order for the poténtial, v). We
present here a partial form of this equation with= 0

3%V, v,
=Z— =u-—".
022~z ¢

This equation forV, is equivalent to the equation fdr— (equation (2.16)) provided
that the constants;, «y, B2 andy, satisfy

Y2+ a1z + 203 =0. (2.21)

Let us summarize these considerations as

Proposition 1. A quasi-point transformation of the form

2 C
P,(x) = Zakxk =
~ u—v

On() =Y by =v1(u+v) +¥a(x, py)  a, b €R
k=1

extended to a canonical transformation, transforms the Hamiltonian
H = f)p?+ gw)p? + Vi) + Va(v)
into the natural Hamiltonian form

H=3p2+p)+Vxy

if and only if
C
x2=
u—v
Px _ (ogu+az)p, — (a2v +a3)py
X - u—v
1 o 2 apx?
2. 1 (Px 2
=— - —2a3— — () + 2
y a2<u+v o182 3 2(x> + 2) (2.22)

1
Yy = ((azu + az)py — (a2v + a3) py

2
L Pe (et
2x \ x2

6

+ =8 60(2))2 + o182 — a2x2> )
o2

and the potentials

_ 2/a183 + B2E% + Br§ + Po _ B B B
Vi(§) = o T s k=1 &=u or k=2 &=v.

Constantsy;, g;, j = 1, 2, 3 are the six free parameters of this transformation.
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An inverse transformation to (2.22) reads

9 Ollpf o
E=doot oy~ @) e E=u
1 pxC Px 0l1p2 () 9 5
= _ _ bPx X o3 6a _
2(026 + a3) ( 2 Mo, < 2 ap 2y” +a1f2 — aox

where the integraC is an as yet unspecified function of the new variallesp,, y, py).
We have to substitute this inverse transformation into the definition of the integral of motion
C (equation (2.2)) and solve the resulting equation. It has the polynomial form

aC*+bC%4+¢=0 (2.24)

with the coefficientsz, b and ¢ depending on the variablgs, p,, y, py). There are two
squtionssz, which are related by the change of variabjes> —y, p, — —p,, and they

are polynomial expressions in the new variables. Notice that the second integral of motion
C (equation (2.2)), which is polynomial itx, p,, v, p,) becomes an algebraic function of

(X, Pxs Y5 Py)-
After substitution ofC(x, py, y, py) into (2.23) we get an inverse transformation.

(2.23)

43

Proposition 2. A Hamiltonian
H = fw)p? + gW)p? + Viu) + Va(v)
with the potentials given by (2.17) transforms to either of two natural Hamiltonians

2
Hy= 302+ ) — 22 0+ 6% 4 8y + Lha(2 + 4D + 20 4 2mfy (225)
2 Y 20[1 2 01%)’2

and
o
Hy = 3%+ p}) — 5 - (' + 665y 4 ) (2.26)
’ 1
under the quasi-point transformation (2.22) and under the point transformation, respectively.

For brevity, we putez = 0 in H; (equation (2.25)), since the introduction @f = 0
corresponds to the shift of the variabde— y + az/4a, [9]. In H> (equation (2.26)) we
presented only the highest polynomial terms.

Systems with Hamiltoniang/; and H, are associated with restricted flows of some
PDEs [3, 2]. In classical mechanics these systems have common separated equations.
Second integrals of motio62 derived from the equation (2.24) are well known and can be
found in [8, 9].

By rescaling constants;, 8; and by taking the limitsx; — 0 andaz — 1, the
Hamiltonians (2.25) and (2.26) are transformed into the following Hamiltonians for the
Henon—Heiles system [3, 7]:

2
Hy = 3(p2 + pd) + my(sxz +16y%) — Bo(x” + 16y?)
+ 2(c1B2 — 2B1)y + 2P0 + a1 821
Hy = 3(p%+ p2) + ay(x* +2)7) .
A complete account of this limit procedure can be found in [9].
It is known that the Hamiltonian (2.25) has integrable extensions

(2.27)

m [ n
H=H1’2+*2+*2+*6+6‘y
X y X
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where eithere = 0 orn = m = 0 [8]. We can include the termgx~2 andly~2 in our
proposed scheme. Let us consider the following infinite-dimensional representatiti@)of
defined in the Cartan—Weil basis:

xp X p
53=? S+=? S—=—? {p.q} =1.
The mapping
§3 —> 53 =53 s — s, =54
2 9 (2.28)
s,—>sL:s,+fs;1:p—+ ! feR

2 x?
is an outer automorphism of the space of infinite-dimensional representatieh@)fFor
the Henon—Heiles system and for the system with a quartic potential, the phase space can
be identified completely or partially with the coadjoint orbitssif{2)* as (2.28). Hence,
all the presented results can be carried over on the systems with shifted squared momenta.
The corresponding deformation of the separated equation has been described in [8].

3. Quasi-point transformations and SUSY quantum mechanics

Next, we present the interesting relations of the quasi-point canonical transformation
with the supersymmetrical quantum mechanics, which represents in a concise algebraic
form the spectral equivalence between different Hamiltonian quantum systems realized
by the Darboux transformation [1]. Further, for brevity, we fix the value of parameters
,Bkzo, Ol2:1, a1:2.
Variables of separatiom, v for the HamiltonianH, can be defined as the roots of
guadratic equation
, y2 — x2
§° ¥+,
The quasi-point transformations (2.23) can be presented in a similar form. Varighles
(equation (2.23)) are roots of the quadratic equation

=0. (3.1)

g+ +g0), | g+ —gq-)?

2 —
§ 2 §+ 1x2 =0. (3.2)
Here, we introduced functiong. and f with the following properties:
(Hoqe)=%fq:  C?=4q:q-. (3:3)

This algebra (3.3) is the classical limit of the two-dimensional quantum SUSY algebra [1].
For the system with a quartic potential, functiaps and f are given by
4+ = 3p2 — 3x°(2y* + x°) + x(ypx — 3pyx)
q-(x, px, ¥, Py) = q+(x, px, =y, —py) (3.4)
f=2y
and for the Henon—Heiles system

gr = 392+ 2%y +ix\ 22p.y — xpy)ps — (8Y7 + x2)x?
q—('x’ Pxs Y, p&) qu_(xv Pxs Y Py) (35)
Fei 4pxy — xpy

V2@2pyy — xpy)px — (8y? + x?)x?




7776 S Rauch-Wojciechowski drAA V Biganov

where iisv/—1 andg’ denotes the complex conjugate of the functign For the arbitrary
values of the parameters, and 8, these functions are derived from equations (2.23) and
(3.2).

For the system with quartic potential functiops and f, equations (3.4) have been
introduced in [6] by considering a linearization of the corresponding Hamiltonian flow on
certain constraint submanifolds.

It would be interesting to apply equation (3.2) and its quantum counterpart for separating
variables in quantum mechanics.

Motivated by the relation between the classical limit of SUSY quantum mechanics and
guasi-point separation of variables we present the classical SUSY algebra (3.3) for some
other two-dimensional natural Hamiltonian systems. For the systems of [11] and for the
Holt-like systems the classical limit of SUSY algebra (3.3) is equal to

2 2 2
py + 5 a 9 _
Hy =" "4 (1 + a2a3> x?3 - —16afa2x 2By _agy

2 2
Pi 9 2. -2/3 o2 “% 2/3 | i 1/3 @2

q+:_?+f6 o a2X y—Ol—l + 7—}—0{20{3 X7+ 1| aix px—i-alpy
f= —%ioel)c_z/3

and

2 2
pytp _
H = Tv +vy 2/3(gy2+x2)
gy = P2+ 25 22 i) 2popy + Bryl)2 — (2x2y-2)2

f= 4ix2p,
 3y20:2p,p, + 6yx)? — 4x4

whereq_(x, px, ¥, py) = g (x, px, ¥, Py)-

Notice, that the construction of isospectral two-dimensional Hamiltonians in
supersymmetrical quantum mechanics is closely connected with another problem, namely
with a search for the second integral of motion for the quantum integrable systems [1].
Here we present a new characterization of this problem.

Proposition 3. Let us start with the classical SUSY algebra (3.3) for a two-dimensional
integrable system defined by four functioHs f andg®. If the following equation forAh
can be solved:

{Ah {q+.q-}} = {f q+ta- +{f q-}a+ (3.6)
then the pair of mutually commuting integrals of motion
H=H+ Ah C=1{q%q} (H,C}=0 (3.7)

defines a new two-dimensional integrable system.

The evolution on a 2-dimensional symplectic manifold is called completely integrable if
there exist: functions1y, ..., I, which are independent integrals in the involution

{Ii(xvp)vlj(-xvp)}ZO i,j=1,...,n.

The initial integrals of motionH and C are functionally independent functions and,
therefore, the new integrald and C are independent. For the proof of involution of
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integrals we need the Jacobi identity for the Poisson brackets. First, assuming (3.3) holds
we have

{H,CYy={H {qg*. ¢ V}={¢" (H.q V(¢ . (H.q"})

=q {fiq" Y +q {f.q7).

Next, using (3.6) we get (3.7)

(H+ Ah,C}={H,C}=0.
So, we have two independent integrals of motion in involution, which define a new integrable
system.

As an example, for the system with a quartic potential, equation (3.6) can be integrated
and it yields

2 2
2+ p?
1= P 5 Py _ le(x4+ 6x2y? + 8y%)
Ah = —%x“
22 (3.8)
H = H;+ Ah = Ty — 1+ 12¢%)% + 16y%)

C ={g+,q-} = 16(2(pyx — yp)ps — (292 — xP)yx?).

A new system with integrals of motioH, C is separable in the parabolic coordinates, which
are defined as roots of the quadratic equaiéf- 2y — x2 = 0.

4. Conclusions

In the previous paragraphs we have examined the six-parameter quasi-point canonical
transformation leading to separation of variables for the Henon—Heiles system and a system
with a quartic potential. We have proved that this transformation is strictly connected to the
rectangular separated equations and that it cannot be generalized. In addition, we have found
some relations of these variables of separation with the two-dimensional supersymmetric
guantum mechanics.
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